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Analytic Potentials for Realistic
Electrodes

S. E. Barlow, A.E. Taylor and K. Swanson

W.R. Wiley Environmental Molecular Sciences Lab
Pacific Northwest National Laboratory
P.0O. Box 999 (K8-88)
Richland, WA 99352

Abstract. We show how LaPlace’s equation can be accurately solved when the boundary
conditions are not amenable to direct analytic treatment. This problem arises for nearly
all real electrodes. Qur approach systematically combines numerical relaxation techniques
with analytic expansions to produce a provably unique solution.

INTRODUCTION

Many problems in physics and engineering begin with a solution to LaPlace’s
equation:

V23 (r) =0 1)

where @ (r) is a potential in some volume of space determined by the boundary
conditions. Analytic solutions to this partial differential equation are limited to
geometries that precisely match an orthogonal coordinate system. For example,
eq. (1) can be readily solved for the rectangular or cylindrical box by the method
of separation of variables. Although this method is very powerful, by itself it suffers
from at least two shortcomings. First, the solutions take the form of infinite sums
over special functions and are rather difficult to interpret physically. And second,
the rigorous requirements of the boundaries are almost never met in practise.
For instance, in electrostatic problems, gaps between electrodes are required to
maintain potential differences, further in real instruments it is often necessary to
put holes in the electrodes to provide access to the internal volume. Sometimes it
is desirable to shape boundary electrodes that do not even approximately match
those of an orthogonal coordinate system, e.g., the hyperbolic ion trap. Finally, the
analytical techniques cannot readily account for construction errors that inevitably
arise in real devices. :
Equation (1) may also be solved numerically. In recent years, computer codes
have been developed to tackle some of the short comings listed above. In these
codes, the boundary conditions are mapped onto a grid. The potential is then found
by a series of “relaxation” calculations. The most widely used of these codes is the
SIMION]1], but others are available. These codes produce a “potential array” for
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the volume of interest. Like the analytical approaches mentioned above, numerical
solutions tend to provide little direct insight into the physics of interest.

A powerful technique for providing insight into the physical consequences of a
potential is the “multipole-pole” expansion. The multipole expansion of a poten-
tial may be formally accomplished by writing the solutions to eq. (1) in spherical
coordinates and then changing to the desired coordinate system-generally cylindri-
cal polar (7,0, z) or cartesian (z,y,z).coordinates. For example in cylindrical-polar
coordinates, with cylindrical symmetry the solution of eq. (1) is

o0

$(r,z)= V_Z %tb"(r,z) (2)

n=0T0

where V' is some potential value; r¢ is a distance or size scaling factor; the C, are
the constants to be determined from the boundary conditions; and &, (r,z) are
the various “orders” of the solution to eq. (1). Since many electrostatic problems
have cylindrical symmetry, and the treatment is simpler (two instead of three
dimensions) all further discussions here will be limited to this case. The multipole
expansion is particularly useful because the behavior of a system is normally
governed by the lowest order terms that are present in the potential. The trick is
to find a way to reliably and accurately evaluate the C,,’s. In the following section,
we outline the steps that allow us to evaluate these constants from numerical
calculations. (Much more detail is provided in our paper, scheduled for publication

in 2001.[2])

EVALUATION OF MULTIPOLE COEFFICIENTS FROM
NUMERICAL RELAXATION CALCULATIONS

Computation of the C,,’s proceeds in four steps. First, the boundary value problems
is set-up using some sort of numerical relaxation calculation. Second, we extract
from the relaxation calculation the potential over a “virtual Gaussian surface.” In
the third step, this virtual surface is used to evaluate the coefficients in the sums
of the formal solution of eq. (1). Finally, the formal solution is expanded term by
term tn a Taylor series to evaluate the C,’s.

Setting up the Problem

In general the problem is set up by defining the symmetries, boundary shapes
and grid size through the GUI of the relaxation code, e.g. SIMION. Care must be
taken to insure that the grid is sufficiently fine to resolve the details of the problem
adequately. SIMION uses a uniform cartesian grid, which simplifies the next step,
but the cost is some loss of precision. While we have no requirement for a uniform
mesh (grid) we do need to have the potential specified on cylindrical surfaces
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FIGURE 1, Schematic of hyperbolic trap electrodes and inscribed cylinder.

(r=a,z) and (r,z = Zhottom or top) where a is the radius and zp54t0m or top

are the end of our “virtual Gaussian” surface.

Extracting the “Virtual Gaussian Surface”

As a practical matter, the bulk of the real work is done when the relaxation
calculation has been performed. However, we are left with an array of numbers—
the potential array-that may have 10° or more elements. What we must do next is
to define our inscribed cylindrical surface such that it is as large as possible, but
does not include any conductors. The cylinder’s axis of symmetry needs to coincide
with the symmetry axis of the problem. We also need to define a z = 0 plane and
“top” and “bottom” planes. This cylinder’s dimensions must be chosen to exactly
match a line of grid points. With the cylinder so defined, we can then select those
points in the potential array that fall on the cylinder’s surface. The SIMION code
does not give direct access to the potential array file. We have written a small
program that allows us to extract those portions of this file that we need for the
calculations of the next section. This program and some documentation is available
on the world wide web.[3]

521




The Analytic Potential

The solution of eq. (1) in a cylindrically symmetric domain that includes the

axis of symmetry is
(23+1)m(2z—2¢—2p) (29+1)xr
iOO{ Q) 5COS 22(;,(;;,') ")]]10 24(;.—2 )] }+
= . w3lz—2z—2 ST
Hog,sin l .b 0 .”t—ztj (3)
- a3 ,5inh [iz—_—Z‘—)’—] Jo %]
—ay,sinh [iz;f;")—]i] Jo [L’c—']

Zt=—2ph

&(r,0,2)=
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Here, Jo(z) is the Bessel function of the first kind of order 0; and Iy(z) is the
modified Bessel function of order zero. The symbol j; is the st zero of Jy(z) . If
we designate the potential on the top of the cylinder as V;(r,z = z;), that on the
bottom as V;(r,z = z) and on the side as V; (r = ¢,z) we find for the o's:

2 2t (2s+ 1)7T(2z~zb-—zt)]
9 = ‘/’4 O d‘:" 4
T (e ) 1o [ 2] f, v “’"[ 2 (20— ) ()
2 w . {28722 — 2 — z,]]
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Q3 (z— Zb) Iy [;S-”zc,,l /;b (z)sm [ 7 « (5)
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and ) r |
o= Gl Vi(r) (M) dr. 7
T crsinh (2 “){Jlusn?/o () o7 rdr (7)

where we use V (r,z) found from the finite difference calculations as described
below. The a’s tend to become rapidly small with s, so we find that only a few of
these terms need to be explicitly evaluated unless we are interested in the solution
very near a boundary. If the (z,y) plane at z =0 is also a symmetry plane, the eqs
(3) to (7) simplify because az s =0 and a3, = —ay,,.

The Multipole Expansion

Having found the a’s, the multipole expansion can be accomplished easily. We
set r =0 in eq.(3), since Jo(0) = [o(0) = 1, we are left with trigonometric and
hyperbolic trig functions whose power law expansions in z are readily found. Since
each power of z is linearly independent, we merely collect like terms and add them
up. By eq.(2), the sums for some power of z, say n is simply C,/r3.

The values we find for (), are correct to within the accuracy of our initial
relaxation calculation. They are also complete and unique, with respect to our
choice of z = 0. Sometimes the choice of the origin will not be immediately obvious,




FIGURE 2. Sketches of various electrodes for which calculations were performed, see text and
tables.

techniques for finding the point are discussed by Barlow et al.,[2] but lie outside
the scope of this summary.

TABLE 1. Calculated even order C’s for nine variants of hyperbolic electrode

structures
Trap Type Fig.2.| Cy | ©Co | C,4 | Cs
?Ideal” Trap | 05 | -1 | 0 | 0
Truncated Trap al | 05007 | —0.9799 | 1.23(10)™* |

| | |
| l |
| | 1.07(10)° |
| +endcap holes | a2 | 05010 | —0.9784 | 4.52(10)™® | 1.26(10)7% |
| + ringslot | a3 | 0.4838 | —-1.0044 | -2.72(10)"% | 5.77(10)7% |
| Stretched Trap | 1 | 0.5567 | —0.8777 | —1.51(10)% | —6.40(10)™® |
|
|
I
l

+ endcap holes | ¢2 | 0.5569 | —0.8767 | —1.26(10)"% | —1.02(10)™? |
Asymmetric Trap | bl | 0.5007 | —0.9801 | ~2.26(10)™* | 8.02(10)™* |
+ endcap holes | b2 | 05009 | —0.9792 | 2.13(10)"% | 6.72(10)"° |
+ ringslot | b3 | 04818 | —0.9855 | —3.07(10)"% | 4.61(20)7" |
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TABLE 2. Calculated odd order C’s for nine variants of the hyperbolic
electrode structure. Numbers in parenthesis are nominally zero. The * denotes
value that were set to zero.

| Trap Type | Fig. 2. | C, | Cs | Cs |
| “Ideal” Trap | | 0 | 0 | 0 |
| Truncated Trap | a1l | —1.01007° | 301007 | 3[107° |
| +endcap holes | a2 | -9. [10]‘”’ | 3po)® | —2p0® |
| +ringslot | a3 | -2[10° | 6[10"° | -s5Q101"" |
| Stretched Trap | et | —tf10]™° | 3(10]™° | -2010™" |
|  +endcapholes | 2 | —1puo]™® | 2007 | —1p10]7° |
| Asymmetric Trap | b1 | 00 | -3.06(10)"* | -3.30(10)™" |
l + endcap holes | b2 | 0" I -1.45(10)7° | -3.81(10)"2 |
| +ringslot | b3 | 0 | —5.18(10)"° | -6.55(10)"" |
DISCUSSION

Figure (2) illustrates eight variations of hyperbolic electrodes for which we have
done calculations. In each case, the hyperbolae were truncated at 2.8ry to closely
match electrode structures that we possess in the laboratory. The trap geometries
labeled al,a2, and a3, are symmetric trap structures with the endcap spacing
229 = 2v/2ry, where we successively add end cap holes and a ring slot to the already
truncated and flanged electrodes. The end cap holes were set al 0.075r; and the
ring slot at closely match actual trap electrode structures. The structures labeled
bl, b2, and b3 are asymmetric trap structures[4], with similar endcap holes and
ring slot. The two structures labeled ¢l and ¢2 have electrode shapes that are
identical to those of al and and 2, but the endcap spacing has been increased by
10.8% as is standard commercial practice.

Table 1 summarizes the even order coefficients for each of these trap geometries.
while Table 2 shows our evaluation of the odd order.
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